Sabtu, 07 November 2015

FISIOLOGI- METABOLISME ENERGI SAAT BEROLAHRAGA


PENDAHULUAN
1.1   Latar Belakang
Di dalam berbagai jenis olahraga baik olahraga dengan gerakan-gerakan yang bersifat konstan seperti jogging, marathon dan bersepeda atau juga pada olahraga yang melibatkan gerakangerakan yang explosif seperti menendang bola atau gerakan smash dalam olahraga tenis atau bulutangkis, jaringan otot hanya akan memperoleh energi dari pemecahan molekul adenosine triphospate atau yang biasadisingka sebagai ATP. Simpanan energi yang terdapat di dalam tubuh yaitu simpanan phosphocreatine (PCr), karbohidrat, lemak dan protein, molekul ATP ini akan dihasilkan melalui metabolisme energi yang akan melibatkan beberapa reaksi kimia yang kompleks. Pengunaan simpanan-simpanan energy tersebut beserta jalur metabolisme energi yang akan digunakan untuk menghasilkan molekul ATP ini juga akan bergantung terhadap jenis aktivitas serta intensitas yang dilakukan saat berolahraga.
1.2   Rumusan Masalah
Berdasrakan uraian pada keterangan di atas dapat di ambil rumusan masalah seperti :
Dimana proses metabolisme energy di prose di dalam tubuh.?
1.3 Tujuan
Tujuan dari makalah ini adalah sebagai panduan atau sebagai sebagian kecil sumber pengetahuan tentang metabolisme energy saat kita berolahraga. Dan nantinya dapat menambah pengetahuan dan juga bermanfaat bagi kita.
1.4 Metode Penulisan
Dalam pembuatan makalah ini kami menggunakan metode membaca buku-buku dan brouwsing internet yang berkaitan denga penulisan makalah ini.






BAB II
PEMBAHASAN
2.1  Metabolisme Energi Saat Berolahraga
Inti dari semua proses metabolisme energi di dalam tubuh adalah untuk menresintesis molekul ATP dimana prosesnya akan dapat berjalan secara aerobik maupun anearobik. Proses hidrolisis ATP yang akan menghasilkan energi ini dapat dituliskan melalui persamaan reaksi kimia sederhana sebagai berikut:

ATP + H O ---> ADP + H + Pi -31 kJ per 1 mol ATP

Di dalam jaringan otot, hidrolisis 1 mol ATP akan menghasilkan energi sebesar 31 kJ (7.3 kkal) serta akan menghasilkan produk lain berupa ADP (adenosine diphospate) dan Pi (inorganik fosfat). Pada saat berolahraga, terdapat 3 jalur metabolisme energi yang dapat digunakan oleh tubuh untuk menghasilkan ATP yaitu hidrolisis phosphocreatine (PCr), glikolisis anaerobik glukosa serta pembakaran simpanan karbohidrat, lemak dan juga protein. Pada kegiatan olahraga dengan aktivitas aerobik yang dominan, metabolisme energi akan berjalan melalui pembakaran simpanan karbohdrat, lemak dan sebagian kecil (±5%) dari pemecahan simpananprotein yang terdapat di dalam tubuh untuk menghasilkan ATP (adenosine triphospate). Proses metabolisme ketiga sumber energi ini akan berjalan dengan kehadiran oksigen (O ) yang diperoleh melalui proses pernafasan.
Sedangkan pada aktivitas yang bersifat anaerobik, energi yang akan digunakan oleh tubuh untuk melakukan aktivitas yang membutuhkan energy secara cepat ini akan diperoleh melalui hidrolisis phosphocreatine (PCr) serta melalui glikolisis glukosa secara anaerobik. Proses metabolisme energi secara anaerobik ini dapat berjalan tanpa kehadiran oksigen (O  Proses metabolisme energi secara anaerobik dapat menghasilkan ATP dengan laju yang lebih cepat jika dibandingkan dengan metabolisme energi secara aerobik. Sehingga untuk gerakan-gerakan dalam olahraga yang membutuhkan tenaga yang besar dalam waktu yang singkat, proses metabolisme energi secara anaerobik dapat menyediakan ATP dengan cepat namun hanya untuk waktu yang terbatas yaitu hanya sekitar ±90 detik. Walaupun prosesnya dapat berjalan secara cepat, namun metabolisme energi secara anaerobik ini hanya menghasilkan molekul ATP yang lebih sedikit jika dibandingkan dengan metabolisme energi secara aerobik (2 ATP vs 36 ATP per 1 molekul glukosa).
Proses metabolisme energi secara aerobik juga dikatakan merupakan proses yang bersih karena selain akan menghasilkan energi, proses tersebut hanya akan menghasilkan produk samping berupa karbondioksida (CO ) dan air (H O). Hal ini berbeda dengan proses metabolisme secara anaerobik yang juga akan menghasilkan produk samping berupa asam laktat yang apabila terakumulasi dapat menghambat kontraksi otot dan menyebabkan rasa nyeri pada otot. Hal inilah yang menyebabkan mengapa gerakangerakan bertenaga saat berolahraga tidak dapat dilakukan secara kontinu dalam waktu yang panjang dan harus diselingi dengan interval istirahat.

2.2 Proses Metabolisme Secara Anaerobik
A.    Sistem PCr
Creatine (Cr) merupakan jenis asam amino yang tersimpam di dalam otot sebagai sumber energi. Di dalam otot, bentuk creatine yang sudah ter-fosforilasi yaitu phosphocreatine (PCr) akan mempunyai peranan penting dalam proses metabolisme energi secara anaerobik di dalam otot untuk menghasilkan ATP. Dengan bantuan enzim creatine kinase, phosphocreatine (PCr) yang tersimpan di dalam otot akan dipecah menjadi Pi (inorganik fosfat) dan creatine dimana proses ini juga akan disertai dengan pelepasan energy sebesar 43 kJ (10.3 kkal) untuk tiap 1 mol PCr. Inorganik fosfat (Pi) yang dihasilkan melalui proses pemecahan PCr ini melalui proses fosforilasi dapat mengikat kepada molekul ADP (adenosine diphospate) untuk kemudian kembali membentuk molekul ATP (adenosine triphospate).
Melalui proses hidrolisis PCr, energy dalam jumlah besar (2.3 mmol ATP/kg berat basah otot per detiknya) dapat dihasilkan secara instant untuk memenuhi kebutuhan energi pada saat berolahraga dengan intensitas tinggi yang bertenaga. Namun karena terbatasnya simpanan PCr yang terdapat di dalam jaringan otot yaitu hanya sekitar 14-24 mmol ATP/ kg berat basah maka energi yang dihasilkan melalui proses hidrolisis ini hanya dapat bertahan untuk mendukung aktivitas anaerobik selama 5-10 detik. Karena fungsinya sebagai salah satu sumber energi tubuh dalam aktivitas anaerobik, supplementasi creatine mulai menjadi popular pada awal tahun 1990-an setelah berakhirnya Olimpiade Barcelona. Creatine dalam bentuk creatine monohydrate telah menjadi suplemen nutrisi yang banyak digunakan untuk meningkatkan kapasitas aktivitas anaerobik. Namun secara alami, creatine ini akan banyak terkandung di dalam bahan makanan protein hewani seperti daging dan ikan.
B.    Glikolisis (Sistem Glikolitik)
Glikolisis merupakan salah satu bentuk metabolisme energi yang dapat berjalan secara anaerobik tanpa kehadiran oksigen. Proses metabolisme energi ini mengunakan simpanan glukosa yang sebagian besar akan diperoleh dari glikogen otot atau juga dari glukosa yang terdapat di dalam aliran darah untuk menghasilkan ATP. Inti dari proses glikolisis yang terjadi di dalam sitoplasma sel ini adalah mengubah molekul glukosa menjadi asam piruvat dimana proses ini juga akan disertai dengan membentukan ATP. Jumlah ATP yang dapat dihasilkan oleh proses glikolisis ini akan berbeda bergantung berdasarkan asal molekul glukosa.
Jika molekul glukosa berasal dari dalam darah maka 2 buah ATP akan dihasilkan namun jika molekul glukosa berasal dari glikogen otot maka sebanyak 3 buah ATP akan dapat dihasilkan. Mokelul asam piruvat yang terbentuk dari proses glikolisis ini dapat mengalami proses metabolisme lanjut baik secara aerobik maupun secara anaerobik bergantung terhadap ketersediaan oksigen di dalam tubuh. Pada saat berolahraga dengan intensitas rendah dimana ketersediaan oksigen di dalam tubuh cukup besar, molekul asam piruvat yang terbentuk ini dapat diubah menjadi CO dan H O di dalam mitokondria sel. Dan jika ketersediaan oksigen terbatas di dalam tubuh atau saat pembentukan asam piruvat terjadi secara cepat seperti saat melakukan sprint, maka asam piruvat tersebut akan terkonversi menjadi asam laktat.
2.3 Metabolisme Energi Secara Aerobik
Pada jenis-jenis olahraga yang bersifat ketahanan (endurance) seperti lari marathon, bersepeda jarak jauh (road cycling) atau juga lari 10 km, produksi energi di dalam tubuh akan bergantung terhadap sistem metabolisme energi secara aerobik melalui pembakaran karbohidrat, lemak dan juga sedikit dari pemecahan protein. Oleh karena itu maka atlet-atlet yang berpartisipasi dalam ajang-ajang yang bersifat ketahanan ini harus mempunyai kemampuan yang baik dalam memasok oksigen ke dalam tubuh agar proses metabolisme energi secara aerobik dapat berjalan dengan sempurna. Proses metabolisme energi secara aerobik merupakan proses metabolisme yang membutuhkan kehadiran oksigen (O ) agar prosesnya dapat berjalan dengan sempurna untuk

menghasilkan ATP. Pada saat berolahraga, kedua simpanan energi tubuh yaitu simpanan karbohidrat (glukosa darah, glikogen otot dan hati) serta simpanan lemak dalam bentuk trigeliserida akan memberikan kontribusi terhadap laju produksi energi secara aerobik di dalam tubuh. Namun bergantung terhadap intensitas olahraga yang dilakukan, kedua simpanan energi ini dapat memberikan jumlah kontribusi yang berbeda. Karbohidrat dan lemak merupakan sumber energi utama saat berolahraga dan oleh karenanya maka pembahasan metabolisme energi secara aerobik pada tulisan ini akan difokuskan kepada metabolisme simpanan karbohidrat dan simpanan lemak.
A.    Pembakaran Karbohidrat
Setelah melalui proses glikolisis, asam piruvat yang di hasilkan ini kemudian akan diubah menjadi Asetil-KoA di dalam mitokondsia. Proses perubahan dari asam piruvat menjadi Asetil-KoA ini akan berjalan dengan ketersediaan oksigen serta akan menghasilkan produk samping berupa NADH yang juga dapat menghasilkan 2-3 molekul ATP. Untuk memenuhi kebutuhan energi bagi sel-sel tubuh, Asetil-KoA hasil konversi asam piruvat ini kemudian akan masuk ke dalam siklus asam-sitrat untuk kemudian diubah menjadi karbon dioksida (CO ), ATP, NADH dan FADH melalui tahapan reaksi yang kompleks. Reaksi-reaksi yang terjadi dalam proses yang telah disebutkan dapat dituliskan melalui persamaan reaksi sederhana sebagai berikut:
Asetil-KoA + ADP + Pi + 3 NAD + FAD + 3H O ---> 2CO + CoA + ATP + 3 NADH + 3H + FADH
Setelah melewati berbagai tahapan proses reaksi di dalam siklus asam sitrat, metabolisme energy dari glukosa kemudian akan dilanjutkan kembali melalui suatu proses reaksi yang disebut sebagai proses fosforlasi oksidatif. Dalam proses ini, molekul NADH dan juga FADH yang dihasilkan dalam siklus asam sitrat akan diubah menjadi molekul ATP dan H O. Dari 1 molekul NADH akan dapat dihasilkan 3 buah molekul ATP dan dari 1 buah molekul FADH akan dapat menghasilkan 2 molekul ATP. Proses metabolisme energi secara aerobik melalui pembakaran glukosa/glikogen secara total akan menghasilkan 38 buah molukul ATP dan juga akan menghasilkan produk samping berupa karbon dioksida (CO ) serta air (H O). Persamaan reaksi sederhana untuk mengambarkan proses tersebut dapat dituliskan sebagai berikut :
Glukosa + 6O +38 ADP + 38Pi ---> 6 CO + 6 H O + 38 ATP
B.    Pembakaran Lemak
Langkah awal dari metabolisme energi lemak adalah melalui proses pemecahan simpanan lemak yang terdapat di dalam tubuh yaitu trigeliserida. Trigeliserida di dalam tubuh ini akan tersimpan di dalam jaringan adipose (adipose tissue) serta di dalam sel-sel otot (intramuscular triglycerides). Melalui proses yang dinamakan lipolisis, trigeliserida yang tersimpan ini akan dikonversi menjadi asam lemak (fatty acid) dan gliserol. Pada proses ini, untuk setiap 1 molekul trigeliserida akan terbentuk 3 molekul asam lemak dan 1 molekul gliserol .
Kedua molekul yang dihasilkan melalu proses ini kemudian akan mengalami jalur metabolisme yang berbeda di dalam tubuh. Gliserol yang terbentuk akan masuk ke dalam siklus metabolisme untuk diubah menjadi glukosa atau juga asam piruvat. Sedangkan asam lemak yang terbentuk akan dipecah menjadi unitunit kecil melalui proses yang dinamakan ß-oksidasi untuk kemudian menghasilkan energi (ATP) di dalam mitokondria sel Proses ß-oksidasi berjalan dengan kehadiran oksigen serta membutuhkan adanya karbohidrat untuk menyempurnakan pembakaran asam lemak. Pada proses ini, asam lemak yang pada umumnya berbentuk
rantai panjang yang terdiri dari ± 16 atom karbon akan dipecah menjadi unit-unit kecil yang terbentuk dari 2 atom karbon. Tiap unit 2 atom karbon yang terbentuk ini kemudian dapat mengikat kepada 1 molekul KoA untuk membentuk asetil KoA. Molekul asetil-KoA yang terbentuk ini kemudian akan masuk ke dalam siklus asam sitrat dan diproses untuk menghasilkan energi seperti halnya dengan molekul asetil-KoA yang dihasil melalui proses metabolisme energi dari glukosa/glikogen.

BAB III
PENUTUP
3.1 KESIMPULAN
Metabolisme aerobik dan metabolisme anaerobik. Metabolisme aerobik yaitu metabolisme energi pembakaran lemak dan karbohidrat dengan kehadiran oksigen (O2). Oksigen tersebut muncul melalui proses pernafasan. Sementara itu, metabolisme anaerobik merupakan metabolisme dengan tanoa kehadiran oksigen (O2).
Energi yang disediakan melalui metabolisme energi secara aerobik cenderung tersedia dalam jangka waktu yang panjang bagi tubuh. Sebaliknya, metabolisme energi secara anaerobik cenderung waktunya pendek bagi tubuh. Jangka waktu energi tersedia bagi tubuh kira-kira 5-10 detik.
Metabolisme energi secara aerobik merupakan proses yang tidak menghasilkan produk sampingan sehingga lebih bersih jika dibandingkan dengan metabolisme energi secara anaerobik yang menghasilkan asam laktan. Produk sampingan berupa asam laktat itu membatasi efektivitas kontraksi otot sehingga menimbulkan rasa nyeri. Sehingga dapat disimpulkan bahwa olahraga sangat mempengaruhi metabolisme tubuh dan memberikan dampak, baik dampak positif maupun dampak negative

3.2 SARAN
Setelah memahami dan mengerti maksut dari makalah ini alangkah baiknya kita Tubuh kita memiliki simpanan karbohidrat dengan jumlah yang tidak banyak yaitu sekitar 0,5 kg. Simpanan karbohidrat tersebut berbentuk glikogen otot, glikogen hati, dan glukosa darah. Sementara simpanan karbohidrat jumlahnya terbatas, simpanan lemak jumlahnya banyak. Simpanan lemak berada di dalam jaringan adipose dan di dalam otot sebagai triasilgliserol.



DAFTAR PUSTAKA
Dennis, S.C., & Noakes, T.D., Exercise:muscle & metabolic requirement. In Encyclopedia of Food Sciences & Nutrition, 2nd Edition, Caballero, B. Trugo, L.C., & Finglas, P.M.,Eds,. Academic Press. 2003.

Atmalsier, Sunita “Prinsip Dasar Ilmu Gizi” Gramedia Pustaka Utama14-19 Jakarta 2001

Corwin, J. Elizabeth, Buku Saku Patofisiologi E.G.C 581-83, Jakarta 2009


Tidak ada komentar:

Posting Komentar